
Jacobi’s method
1. Use four steps of Jacobi’s method to approximate a solution to a system of linear equations Au = v where

5 1 2

1 10 2

2 2 10

A

− 
 

=  
 − 

 and

1.5

0.2

1.0

− 
 

=
 
 − 

v .

Answer:
1

0 diag

0.3

0.02

0.1

A−

− 
 

= =  
 − 

u v , and 1

0.344

0.07

0.164

− 
 

=
 
 − 

u , 2

0.3796

0.0872

0.1828

− 
 

=
 
 − 

u , 3

0.39056

0.09452

0.19336

− 
 

=  
 − 

u ,

4

0.396248

0.097728

0.197016

− 
 

=  
 − 

u .

2. The solution to Question 1 is the vector

0.4

0.1

0.2

− 
 

=
 
 − 

u . What is
2k−u u for each of these

approximations? Here,
2

v represents the 2-norm of the vector v, also known as the Euclidean norm: the

square root of the sum of the squares of the absolute values of the entries.

Answer: 0.1625, 0.07302, 0.02959, 0.01278, 0.005305

3. The errors in each approximation in Question 2 seem to drop by approximately a constant with each step.

What would be your estimate as to the reduction in this error?

Answer: The appears to drop by a value between 2.0 and 2.5, but 2.37 is close.

4. Verify your response to Question 3 by running the following Matlab code:

A = [5 1 -2; 1 10 2; -2 2 10];
v = [-1.5 0.2 -1.0]';
u = [-0.4 0.1 -0.2]'; # The exact solution to A*u = v
Adiag = diag(diag(A));
Aoff = A - Adiag;
InvAdiag = Adiag^-1;
u1 = InvAdiag*v;

for i = 1:50
 u0 = u1;
 u1 = InvAdiag*(v - Aoff*u1);
 norm(u0 - u)/norm(u1 - u)
end

5. What is happening in the last few steps of the for loop in Question 4?

Acknowledgement: Chinemerem Chigbo pointed out they may not teach the 2-norm representation in first-

year linear algebra.

