
Jacobi’s method 
1. Use four steps of Jacobi’s method to approximate a solution to a system of linear equations Au = v where 
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2. The solution to Question 1 is the vector 

0.4

0.1

0.2

− 
 

=
 
 − 

u . What is 
2k−u u  for each of these 

approximations? Here, 
2

v  represents the 2-norm of the vector v, also known as the Euclidean norm: the 

square root of the sum of the squares of the absolute values of the entries. 

Answer: 0.1625, 0.07302, 0.02959, 0.01278, 0.005305 

3. The errors in each approximation in Question 2 seem to drop by approximately a constant with each step. 

What would be your estimate as to the reduction in this error? 

Answer: The appears to drop by a value between 2.0 and 2.5, but 2.37 is close. 

4. Verify your response to Question 3 by running the following Matlab code: 

A = [5 1 -2; 1 10 2; -2 2 10]; 
v = [-1.5 0.2 -1.0]'; 
u = [-0.4 0.1 -0.2]';           # The exact solution to A*u = v 
Adiag = diag(diag(A)); 
Aoff  = A - Adiag; 
InvAdiag = Adiag^-1; 
u1 = InvAdiag*v; 
 
for i = 1:50 
    u0 = u1; 
    u1 = InvAdiag*(v - Aoff*u1); 
    norm( u0 - u )/norm( u1 - u ) 
end 
 

5. What is happening in the last few steps of the for loop in Question 4? 



Acknowledgement: Chinemerem Chigbo pointed out they may not teach the 2-norm representation in first-

year linear algebra. 


