Jacobi's method

1. Use four steps of Jacobi's method to approximate a solution to a system of linear equations $A \mathbf{u}=\mathbf{v}$ where

$$
A=\left(\begin{array}{rrr}
5 & 1 & -2 \\
1 & 10 & 2 \\
-2 & 2 & 10
\end{array}\right) \text { and } \mathbf{v}=\left(\begin{array}{r}
-1.5 \\
0.2 \\
-1.0
\end{array}\right) \text {. }
$$

Answer: $\quad \mathbf{u}_{0}=A_{\text {diag }}^{-1} \mathbf{v}=\left(\begin{array}{c}-0.3 \\ 0.02 \\ -0.1\end{array}\right), \quad$ and $\quad \mathbf{u}_{1}=\left(\begin{array}{c}-0.344 \\ 0.07 \\ -0.164\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{r}-0.3796 \\ 0.0872 \\ -0.1828\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{r}-0.39056 \\ 0.09452 \\ -0.19336\end{array}\right)$, $\mathbf{u}_{4}=\left(\begin{array}{r}-0.396248 \\ 0.097728 \\ -0.197016\end{array}\right)$.
2. The solution to Question 1 is the vector $\mathbf{u}=\left(\begin{array}{r}-0.4 \\ 0.1 \\ -0.2\end{array}\right)$. What is $\left\|\mathbf{u}-\mathbf{u}_{k}\right\|_{2}$ for each of these approximations? Here, $\|\mathbf{v}\|_{2}$ represents the 2-norm of the vector \mathbf{v}, also known as the Euclidean norm: the square root of the sum of the squares of the absolute values of the entries.

Answer: $0.1625,0.07302,0.02959,0.01278,0.005305$
3. The errors in each approximation in Question 2 seem to drop by approximately a constant with each step. What would be your estimate as to the reduction in this error?

Answer: The appears to drop by a value between 2.0 and 2.5 , but 2.37 is close.
4. Verify your response to Question 3 by running the following Matlab code:

```
A = [5 1 -2; 1 10 2; -2 2 10];
v = [-1.5 0.2 -1.0]';
u = [-0.4 0.1 -0.2]'; # The exact solution to A*u = v
Adiag = diag(diag(A));
Aoff = A - Adiag;
InvAdiag = Adiag^-1;
u1 = InvAdiag*v;
for i = 1:50
    u0 = u1;
    u1 = InvAdiag*(v - Aoff*u1);
    norm( u0 - u )/norm( u1 - u )
end
```

5. What is happening in the last few steps of the for loop in Question 4?

Acknowledgement: Chinemerem Chigbo pointed out they may not teach the 2-norm representation in firstyear linear algebra.

